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Abstract. A mathematical 2D model for a consolidation process of a highly concentrated, flocculated suspension
is developed. The suspension is treated as a mixture of a fluid and solid particles by an Eulerian two-phase fluid
model. The suspension is characterized by constitutive relations correlating the stresses, interaction forces, and
inter-particle forces to concentration and velocity gradients. This results in three empirical material functions:
a permeability, a non-Newtonian viscosity and a non-reversible particle interaction pressure. Parameters in the
models are fitted to experimental data. A simulation program using finite difference methods both in time and
space is applied to one and two dimensional test cases. The effect of different viscosity models as well as the
effect of shear on consolidation rate is studied. The results show that a shear thinning viscosity model yields a
higher consolidation rate compared to a model that only depends on the volume fraction. It is also concluded that
the size of the viscosity influences the time scale of the process and that the expected effect of shear on the process
is not weil reproduced with any of the models.

Key words: consolidation, flocculated suspension, Eulerian two-fluid model, shear thinning, numerical simula-
tions.

1. Introduction

Sedimentation and consolidation are separation techniques used in many industrial applica-
tions such as dewatering of paper pulp, industrial waste water and mineral tailings.

In this paper we present a mathematical model and a numerical 2D study of a gravity
induced consolidation process of a dense flocculated suspension. The suspension we consider
is a binary mixture of water and large agglomerates of particles, flocs. The idea is to simulate
a separation process of industrial waste water.

The flow of a fluid with dispersed particles or flocs can be modeled in different ways
depending on the application as well as the number of of particles in the fluid. Recent ap-
proaches are direct simulations, see e.g., Glowinski et al. [1] and Maury [2]. This is, however,
only feasible for a limited number of particles. Since we are interested in a concentrated,
flocculated suspension where the number of particles is large, we consider the problem from
a macroscopical point of view.

The suspension is modeled as a two-constituent fluid-particle mixture, where the two
phases are treated as interpenetrating continua. We refer to this model as the Eulerian two-
fluid model and this type of model is discussed in Drew and Passman [3] and Bustos et al.
[4, Chapter 3] among others. This is a rather general model and it has been used in different
applications such as dewatering of paper pulp, Zahrai [5] and fluidized beds, Enwald et al.
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Figure 1. Schematic picture of the consolidation process. Closed container with a moving or fixed bottom wall.
Gravity pointing in negative y-direction

[6]. This model is also the starting point for many of the classical 1D consolidation problems,
treated in e.g., Auzerais et al. [7], Bürger and Concha [8] and in Dorobantu [9].

In the simulation the suspension is confined to a closed box. Under the influence of gravity
and shear, accomplished by a continuous movement of the bottom wall, the suspension is
irreversibly compressed and the solid phase is separated from the liquid phase. The process is
shown in Figure 1.

The first part of this paper treats the mathematical model. To make the two-fluid model
complete, one must add constitutive models for the stress-strain relations and the interac-
tion between the phases. We relate these models to three empirical material functions: a
permeability, a non-Newtonian viscosity and a non-reversible particle interaction pressure.
This is discussed in the second part of this paper. We also discuss the determination of dif-
ferent parameter values for the constitutive models by fitting to experimental data. In the
third part, a simulation program is described and results of numerical experiments on au
industrial application are presented. Specifically, the effects of different viscosity models are
investigated.

2. Mathematical formulation

2.1. EULERIAN TWO-FLUID MODEL

The Eulerian two-fluid model is based on a macroscopic description of the process. The two
phases are treated as separate interpenetrating continua and mean equations are formulated for
conservation of mass and momentum. The phases are coupled through inter-phase momentum
transfer terms. This model is discussed in detail in Passman and Drew [3, pp. 137–231].

If surface tension effects are neglected and there is no mass transfer between the phases,
the conservation of mass and momentum for each phase can be formulated as follows

φt + ∇ · (φu) = 0, (1)

∇ · (φu + (1 − φ)v) = 0, (2)

ρsφ
Du

Dt
+ φ∇pf − ∇ · T s = ρsφg + m, (3)

ρf (1 − φ)
Dv

Dt
+ (1 − φ)∇pf − ∇ · τ f = ρf (1 − φ)g − m, (4)
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Du

Dt
= (ut + u · ∇u)

Dv

Dt
= (vt + v · ∇v).

Subscript s denotes the solid phase and f denotes the fluid phase. The volume fraction of
solids is denoted by φ ∈ [0, 1], ρ is the density and u, v ∈ R

2 are the velocities of the solid
and fluid phase respectively. The fluid pressure is denoted by pf ∈ R

+. The solids stress
tensor T ∈ R

2×2 and the fluid viscous stress tensor τ ∈ R
2×2 will be discussed below together

with the inter-phase momentum transfer term m ∈ R
2.

3. Constitutive relations

Constitutive laws are necessary to form a closed set of equations and to accomplish the char-
acterization of the material. In this section the models are discussed from a general point of
view and Section 6 gives more details and explains determination of the parameters from
experimental data.

3.1. STRESSES

The solid phase is assumed to support shear forces only when velocity gradients are present,
i.e., in this respect to behave like a fluid, with stress tensor

Ts = −psI + τ s , (5)

where

τ s = ηs(∇u + ∇uT ) − 2
3ηs(∇ · u)I ,

with ηs the viscosity of the particle phase. In the material studied the viscosity of the mixture
is dominated by the particle phase viscosity except in the clear fluid limit. We will therefore
assume that the mixture viscosity ηmix = ηs . Furthermore, we assume that the mixture viscos-
ity is a function of the volume fraction and the shear rate, ηmix = η(φ, |γ̇ |). (η(0, .) > 0 is
chosen larger than the viscosity of pure fluid to avoid excessively small length scales.

The interaction between the particles is described by the solids pressure ps .

3.2. SOLIDS PRESSURE

For a volume fraction φ higher than the so-called gel forming fraction, φg , a strongly floccu-
lated suspension forms a network of flocs where the particles are in contact. The network can
support normal stresses and resists compression until the force exceeds a volume fraction
dependent yield pressure. Then, there will be an irreversible compression of the network
resulting in fluid release and increased concentration of solid particles. The irreversibility
means in this case that when the external compression load decreases, the suspension will
remain compressed. The irreversibility effects are modeled following the method introduced
by Yström [10].

A memory function φ∗(x, t) describes the maximal φ encountered since t = 0 by a
material particle,

φ∗(x, t) = max
0≤τ≤t

φ(x(τ ), τ ).

It satisfies the differential equation
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Dφ∗

Dt
=




Dφ

Dt
when φ ≥ φ∗,

Dφ

Dt
> 0,

0 otherwise.

(6)

and the solids pressure, ps is a function of φ and φ∗ as

ps(φ, φ
∗) =

{
0 if φ < φ∗,

ps,yield(φ) if φ = φ∗,
(7)

3.3. INTER-PHASE MOMENTUM TRANSFER

The inter-phase momentum transfer term takes into account the relative motion between the
particles and the fluid. According to Anderson and Jackson [11] and Auzerais et al. [7],

m = 1 − φ

D(φ)
(v − u), (8)

where we have neglected the virtual mass force term since we only consider slow flows driven
by gravity, see also Section 4.

We define D(φ) = k(φ)/µ as the Darcy function, where k(φ) is the permeability and µ is
the viscosity of the fluid.

4. A reduced model

A dimensional analysis is performed to be able to estimate the order of magnitude of the
different terms in in Equations (1)–(4). Non-dimensional quantities for a flow in a H × H

box under g gravity are introduced as

x∗ = x/H, y∗ = y/H, t∗ = t/T , u∗ = u/U, v∗ = v/U,

p∗ = p/P, ρ∗ = ρ/�ρ, �ρ = ρs − ρf , e∗g = g/G.

A characteristic time scale is given by T = H/U where U is the free settling velocity
of an individual floc at concentration φ0. U is related to the permeability of the material as
U = �ρGD0 where D0 = k(φ0)/µ. Since the consolidation process is dominated by gravity,
the pressure should balance the gravitational forces, P = �ρGH .

Equation (3) together with (5) and (8) can now be written in dimensionless form (the
superscript ∗ is dropped for simplicity)

Fρsφ
Du
Dt

+ φ∇p − 1

Pes
∇ · (φτ s) = − 1

Pe
∇(ps) + ρsφeg + 1 − φ

D(φ)
(v − u), (9)

where the dimensionless numbers, Pe, Pes and the Froude number, F , are defined as

Pe = G�ρH

Ps0
, Pes = G�ρH

τ 0
, F = U 2

GH

with τ0 = Uη0/H . The stress scale factors are η0 = η(φ0, uwall/H) and Ps0 = ps(φ0) where
uwall/H is a measure of the shear rate. Equation (4) can be treated in similar way using the
same dimensionless groups with the Froude number appearing in front of the inertial terms.
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Since the suspension is dense, the permeability will become extremely small in areas where
the concentration of particles is high. In these regions the sedimentation velocity will be low
and F will be small, typically of order 10−9, compared to 1/Pe and 1/Pes which are of order
10−5, for full details see [16]. Therefore, all terms of O(F ) will be discarded from the equa-
tions. As a consequence, the fluid velocity field can be eliminated and the following coupled
hyperbolic-elliptic system is obtained for the unknowns φ, p and u, again in dimensional
form,

φt + ∇ · (φu) = 0, (10)

∇ · (u − D̃∇p) = 0, (11)

∇p − ∇ · (η(∇u + ∇uT − 2
3∇ · u)) = −∇(ps) + φ(ρs − ρf )Geg. (12)

Here u = (u, v) and u and v are the particle velocity field components in the x- and
y-directions and p = pf − p0 − pf eg · x is the reduced pressure, sometimes called the
excess pore pressure. The Darcy coefficient D̃ = (1 − φ)D(φ), the effective solids pressure
ps = ps(φ, φ

∗), and the mixture viscosity η = η(φ|γ̇ |) are determined by experimental data
and will be defined in Section 6.

5. 1D model

The 1D consolidation model is the base for the parameter fitting to experimental data. In the
measurements there is no unloading and φ∗ = φ and φg = φ0, the initial concentration. Let
y ∈ [0,H ] where H is the height of the container. With the gravitational force acting in the
negative y-direction (see Figure 1), the system of Equations (10)–(12) is reduced to

∂φ

∂t
+ ∂

∂y
(φv) = 0, (13)

∂

∂y
(D̃

∂p

∂y
) − ∂v

∂y
= 0, (14)

4

3

∂

∂y
(η

∂v

∂y
) − ∂p

∂y
= ∂ps

∂y
+ Fφ, (15)

where D̃ = D(φ)(1 − φ), η = η(φ), ps = ps(φ) and we have introduced F = g�ρ =
g(ρs − ρf ). The boundary conditions are that v = 0 and ∂p/∂y = 0 at y = 0 and y = H .

Equation (14) can be integrated using the boundary condition at y = 0 and together with
Equation (15) yields a differential equation for v,

4

3

∂

∂y

(
η
∂v

∂y

)
− v

D̃
= ∂ps

∂y
+ φF. (16)

In many applications the viscous term can be neglected depending on the size of a length
scale determined by the viscosity and the permeability, as seen from the following discussion.

Assume that φ is bounded but can be discontinuous and that ps(φ(., t)) ∈ H 1[0,H ]. Then,
if there exists a smooth solution v the following estimate can be obtained by multiplying
Equation (16) with v, integrating by parts and using the Poincaré inequality:
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‖v‖ ≤ F‖φ‖ + ‖(ps)y‖
1

|D̃|∞
+ 4

3

π2

H 2
ηmin

, (17)

where

ηmin = min
0≤y≤H

η(y).

Here ‖ · ‖ is the usual L2 norm defined by

‖f ‖2 = (f, f ) =
∫ H

0
|f |2 dy. (18)

The particle velocity, v, is directly related to the time scale of the consolidation process. In
this case it is the product of permeability and viscosity that is important for the time scale. If
D̃(φ)η/H 2 is small, the time scale is determined by the permeability related Darcy function,
D̃(φ). However, if D̃(φ)η/H 2 becomes large, the viscosity will influence the sedimentation
speed and time scale of the process.

In many practical cases D̃η/H 2 � 1. The velocity profile shows a boundary layer at y = 0

and for y �
√
D̃η the viscous term can be neglected, and

v = −D̃((ps)y + φF). (19)

With v according to (19), (13) becomes a convection-diffusion equation for φ

φt − F(D̃φ2)y = (φD̃(ps)y)y. (20)

Equation (20) is referred to as the classical 1D model. It is used in many applications and
treated from both mathematical and numerical points of view in for example [7], [8], and [9].

6. Parameter fitting

This work is concerned with the consolidation of sludges from industrial waste streams, some-
times with organic content. The application requires that the material data needed should be
furnished by techniques which can be applied routinely. The constitutive models used for
our numerical experiments are fitted to experimental data supplied by Alfa Laval Separation
using filter press devices and torque vane rheometers. An application to mineral suspensions
is treated in depth in Green [12].

Usually the experimental apparatus is limited to a certain range of the parameters. In par-
ticular, the industrial sludge studied in this work has very low permeability and standard filter
press devices require long times to reach equilibrium. This is acceptable for research but for
routine applications other devices must be developed.

A fundamental problem is the determination of the solids volume fraction. This is easy
for mineral suspensions where the density of the solids is accurately known, but we have not
found any experimental technique which can measure this quantity for organic sludge. Solids
weight fraction, however, is easily determined by drying, and it has been necessary to convert
this to solids volume fraction by assumptions on intra-cellular water content.

The yield stress is well determined; all the experimental data is fitted to within a factor
two by the power law below, see Equation (21). The permeability is much more uncertain,
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Figure 2. Filter press device. Walls are impermeable, the piston is porous and the expelled fluid (shown in light
gray) is drained from the top. Position is recorded as function of time after application of a load step P.

for several reasons. The test batches show larger systematic variations, and some tests were
disturbed by gas development. The gas influences the initial consolidation more than it does
the final ‘steady state’. Permeability also varies with concentration much more than yield
stress, see Figure 3 and Equation (23).

The rheological measurements required handling and ‘re-constitution’ of the sludge sam-
ples which may have influenced the interpretations. It was found in the simulations that lower
shear rates occur than were covered in the measurements. This ‘extrapolation’ is also a source
of uncertainty.

6.1. FILTER PRESS DETERMINATION OF YIELD STRESS

The filter press device is shown in Figure 2. The load P is increased in steps and the resulting
movement recorded until steady state is reached. Gravity can be neglected, so at steady state
the concentration is uniform, and yield pressure is equal to the applied load. Concentration is
calculated from the initial concentration and piston position. Several sets of data were used
and gave quite consistent fits to a power law,

ps,yield(φ) = Cpsφ
4·846 (21)

where Cps = 5 × 106 Pa and φ > φg .

6.2. FILTER PRESS DETERMINATION OF PERMEABILITY

Assuming an initial uniform concentration and small load increments we may reduce the
model to a diffusion equation with a constant diffusivity, with a step change in concentration
at one end. The exact solution is of similarity type f (y/

√
t) and it follows that the position

for small t follows a
√
t-curve. Permeability can be read off from the initial slope of h vs.

√
t .

Indeed, one has

k

µ
= π

4mφ




dh

d
√
t

∣∣∣∣
t=0

h(0)

h(∞)
− 1




2

, (22)
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Figure 3. Permeability as function of volume fraction solids. Data for three sludges shown, ‘1997’ o and x, ‘1992’
+. The thick line is a least-squares fit using all the data, the thin line only x and +.

where k/µ is the Darcy function D(φ) and m the compression module dps,yield/dφ. Thus,
determination of the permeability k requires estimation of initial slope, long-term limit, and
differentiation of ps,yield. The results for some of the data are summarized below and in Fig-
ure 3. The volume fraction solids changes about a factor four in an experiment such as the one
shown in Figure 4 where permeability changes by three to four decades.

D(φ) = CDφ
−7·41, (23)

where CD = 4·6 × 10−18 m2 Pa−1 s−1. Note the strong variation with φ. The model has to be
modified in the limit φ → 0 to give finite velocities; this is done. by extrapolating to φ = 0
along the tangent at φ = 0·05. The modification has to be done in such a way that the sharp
clear fluid-suspension interface observed in practice is kept. Figure 4 shows an experiment
with five successive load increases on the same sample, plotted lexicographically. The sample
in the process is compressed from 8 mm to 2·1 mm in the course of about five days. The
simulation reproduces the measured consolidation well with the exception of the two last load
steps. The drops at t = 0, very small in the first load steps and increasing with time, indicate
gas formation from fermentation, which has not been modeled. The parameters used were
obtained by fitting to all experiments, not only the one shown here. There is almost straight
line dependence of h on

√
t for small t .

6.3. SHEAR THINNING VISCOSITY

Flocculated suspensions are known to be shear thinning, see Barnes et al. [13, Chapter 7].
This is validated by experimental shear force data given as a function of volume fraction,
φ and shear rate, |γ̇ |. These data are fitted to a generalized non-Newtonian viscosity law,
see Bird et al. [14, pp. 171–175]. This model for shear-thinning is combined with a volume
fraction dependence yielding:

ηmix = η(φ, |γ̇ |) = Cηφ
3·4

(
1 + |γ̇ |

0·05

)n

, (24)
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Figure 4. Filter press experiment and simulation. o: measurement, solid line: simulation.

where Cη = 9·15 × 107 Pas and n = −0·9. The shear rate is defined as

γ̇ = ∇u + ∇uT , |γ̇ | =
√

1
2 |(trγ̇ )2 − tr(γ̇ · γ̇ )|.

trγ̇ = ∑
n

(γ̇ )nn.
(25)

7. Numerical treatment of the 2D model

The setup for the 2D test case is a closed container of size H ×H with a moving bottom wall
to induce shear on the suspension in addition to the influence of gravity, see Figure 1. This
test problem can be described by Equations (10)–(12) with suitable boundary conditions for
the velocity components and the pressure. On all boundaries, wall normal velocity component
vanishes as does the reduced pressure normal derivative. It follows that there is no fluid flow
through the walls. We assume that the friction between the bottom wall and the particle phase
is large and a no-slip condition is imposed there: u = uwall(x). On the side walls and on the
top we assume perfect slip, i.e. vanishing wall shear stress. This models a device with different
materials in side and bottom walls. It was chosen to let the sediment easily slide up the wall it
meets.

The initial conditions for φ and φ∗ are given by: φ(x, y, 0) = φ0(x, y) and φ∗(x, y, 0) =
φ0. To characterize the suspension we use the material models defined in Section 6 and we
assume that the models and parameters determined by 1D devices are also valid in the 2D
case.

The elliptic-hyperbolic system is solved in the following fashion. With φ and φ∗ known
at, say, t , the elliptic system (11)–(12) is solved for velocities u (and p) with coefficients and
source functions computed from φ(t) and φ∗(t).φ and φ∗ at t + �t are then computed by
the scheme below. The elliptic system of equations is discretized in space by central finite
differences of second order. This choice of discretization is subject to step size restriction
given by
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(�x,�y) ≤
√
ηD̃ (26)

in order to avoid oscillative solutions, cf. the mesh Péclet number restriction for convection-
diffusion problems, see Morton [15, Chapter 7]. To use a uniform grid that satisfies Equa-
tion (26) is too costly. Therefore a priori fixed mesh grading is used with more grid points
close to the bottom of the container where the minimum value of D̃ occurs. In computational
cells where the step size restriction is not fulfilled, the permeability is artificially increased in
order to stabilize the scheme.

Since the model contains only pressure gradients, the pressure will be uniquely determined
only up to an additive constant. In order to fix a unique solution we solve the elliptic problem
as a constrained minimization problem, see Gustavsson [16].

The resulting linear system of equations is ill-conditioned due to the variation of permeabil-
ity and viscosity. After diagonal scaling it is solved by Gaussian elimination taking advantage
of the sparsity of the matrix. The matrix factorization is currently the most time-consuming
part of the simulation.

The hyperbolic Equation (10) is strongly non-linear and requires a conservative upwind
method. Simple one-sided differences are inappropriate because the sign of the characteristic
speed will change during the computation. Instead ideas from Godunov’s method, described
in e.g. Le Veque [17, pp. 136–157], are used.

Equation (10) can be written as

φt + g(φ, u(x, y;φ))x + f (φ, v(x, y;φ))y = 0 (27)

to identify the flux functions g = φu(x, y;φ) and f = φv(x, y;φ). The velocity components
u and v are obtained as the solution to the elliptic system of equations, (11) and (12). The
numerical flux functions used in the scheme require the characteristic speeds gφ = u + φuφ

and fφ = v + φvφ . Since f and g do not depend only on local values of φ, the difference
formula is chosen from numerical approximations to uφ and vφ , see Gustavsson [16]. The
scheme thus becomes equivalent to the Godunov scheme in the limit of vanishing viscosity.

The linear advection equation for φ∗, Equation (6), is solved by a first-order upwind
scheme where the differences are chosen depending on the characteristic velocities, the com-
ponents of the particle velocity field. The time step �t is chosen such that the Godunov
scheme and the linear upwind scheme fulfill the CFL-condition.

8. Results and discussion

The influence of shear on the consolidation process is of great interest. Physical experiments
and interpretations of belt filter press operations show increased consolidation speed as a
result of applied shear. This phenomenon is not reproduced by this model, see Gustavsson
and Oppelstrup [18]. Closely related to the shear forces is the viscosity of the suspension. For
this reason we study the effect of different viscosity models on the process.

In Section 5 we saw that the size of the viscosity influenced the time scale of the 1D
process. To investigate if this holds also in the 2D test case we use a viscosity model that only
depends on the volume fraction.

η(φ) = Cη0φ
3·4. (28)

Simulations are performed with η0 = 9·15 × 107 Pas where C = 0·1, 1 and 10 to obtain
different sizes of the ‘over-all-viscosity’.
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Figure 5. Concentration contours at time t = 250 s. The computations are performed with different viscosity
models. The upper left, right and lower left figures present the results of the non-shear thinning model (28) with
η0 = 0·1, 1 and 10. In the lower right figure the shear thinning model (24) is used. G = 10 000 ms−2 and
uwall = 0·01 ms−1. The dotted line indicates the initial condition.

The results displayed in Figure 5 show that the size of the viscosity is important also in
the 2D case. As the viscosity becomes larger the suspension tends to behave more like a
solid and ‘climbs up’ the right wall. Also, the boundary layer grows with increasing viscosity.
This slows down the consolidation process and a lower mean concentration is obtained, see
Figure 6.

We define the mean concentration in the dense part of the suspension as

φ̄ = 1

Ac

∫
Ac

φ dAc, (29)

where Ac is the area for which φ is larger than a chosen threshold value, φc. In this case
φc = 0·05.

Next, we use a shear thinning viscosity model, (24). In Figure 6 we note that this model
yields a higher mean value of φ, even though the ‘over-all-viscosity’ is of the same order as
with η = 10 in the first computation. One effect of shear thinning is smaller effective viscosity
close to the bottom due to high shear rates. Note also in the lower right plot in Figure 5 that
the suspension starts to slip close to the bottom wall and a thin fluid layer is observed.

In all the computations the following parameters were used:

– H = 0·1 m,

– G = 10 000 ms−2,
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Figure 6. The mean concentration as a function of time for different viscosity models. G = 10000 ms−2 and
uwall = 0·01 ms−1. Dotted line: viscosity is a function of the shear rate ana concentration.

– �ρ = 1000 kgm−3,

– Number of grid points Nx = Ny = 40.

9. Conclusions and future work

A numerical model for consolidation of dense suspensions was developed and constitutive
relations fitted to measurements. The simulations of 1D cases show results in good agreement
with observations and with expectations.

For 2D cases, simulation results are plausible. Quantitative experimental 2D studies are
necessary to validate and further develop the model but are so far lacking.

Currently, the expected effects of shear on the process are not well reproduced. Several
remedies have been suggested. The material should resist shear also in equilibrium. The plastic
material models used for geo-mechanics are interesting. The shape of the plastic yield surface
for such materials make shear forces decrease the normal forces necessary for compression,
and shear will speed up consolidation by that effect. It has also been suggested that permeabil-
ity should depend on the history of a material particle and be greater for a particle in dilation
than compression at the same φ, Eiken [19]. Recent numerical experiments have shown that
such a model does give the expected result. This is an ongoing study and in its current form,
it is overly sensitive to a parameter which defines the floc size of the material in dilation, and
for the value of which we have no good theoretical guidelines.

The sensitivity of the results to the viscosity model also suggests that a more detailed study
needs to be performed to fully understand the effects of shear and viscosity. Direct numerical
simulations of fluid-particle suspensions can be a helpful tool in order to study these effects
on the particle scale.

For 2D models, the grid resolution is currently a limiting factor for numerical experiments.
Iterative solution of the elliptic system offers memory economy but we have so far not found
an effective pre-conditioner.
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